

How To Set Up a Gen3 Data Commons Using Helm Charts

Center for Translational Data Science (CTDS), University of Chicago
Open Commons Consortium (OCC)
Australian BioCommons
New Zealand eScience Infrastructure (NeSI)

The Agenda

- Introduction
- Helm Charts on Desktop Center for Translational Data Science (CTDS), University of Chicago
- Helm Charts on AWS Center for Translational Data Science (CTDS), University of Chicago
- Helm Charts on GCP Open Commons Consortium (OCC)
- Cloud Automation on OpenStack New Zealand eScience Infrastructure (NeSI)
- Open Discussion

Introduction

Robert Grossman, Center for Translational Data Science, University of Chicago

Welcome to the Bi-Monthly Gen3 Community Forum

Gen3 Community Forums

- Make it easier for third parties to set up, operate commons.
- Make it easier for third parties to contribute to the open source Gen3 software base.
- Build a community of researchers using Gen3 to explore and analyze data.

Helm Charts for Desktop

Jawad Qureshi, Center for Translational Data Science, University of Chicago

Helm Charts for Desktop

Helm Charts for AWS

Jawad Qureshi, Center for Translational Data Science, University of Chicago

Helm Charts for AWS

Helm Charts for GCP

Plamen Martinov, Mikisha Patel, Urvi Sheth; Open Commons Consortium

Helm Charts for GCP Use Case

 Enable students to start Gen3 resources with \$300 GCP credits and billing tight to their own account automatically while using Gen3 resources with OCC security boundary. For more information go to https://pandemicresponsecommons.org/blog/

user

• Enable organizations natively on GCP to use Gen3 within their own secure boundary with ease of setup.

Design Overview

Infrastructure pipeline

Build a Gen3 Project in GCP

Gen3 Application Fence Arborist Portal Revproxy WTS Hatchery		
Layer 2		Y
Infrastructure VPC	GKE Cluster Cloud SQL	
Layer 1		
Platform		
Projects	Billing	

Demo

Cloud Automation Deployment for OpenStack

Somesh Nistala, Eirian Perkins; New Zealand eScience Infrastructure

About Aotearoa Genomic Data Repository

Data Repository for Taonga Species -

https://data.agdr.org.nz/

This drove the need to deploy GEN3 on NeSI own Cloud system... on premise deployment

GEN3 is used for the Aotearoa Genomics Data Repository and Rakeiora project (prototype application)

- https://data.agdr.org.nz/
- https://rakeiora.data.nesi.org.nz/login (URL will change)

Kākāpō¹

Snanner²

On-premise Deployments

Docker-compose deployment for submitting data

https://repo.data.nesi.org.nz/

- Prototyping first in Docker-compose
- HPC platform
- 2. Kubernetes deployment for the application

https://data.agdr.org.nz/

- Data storage on NeSI storage via Globus
- FlexiHPC platform (Openstack)

Dictionary Submission Partal Acteuroa Genomic Data Repository in hosted on NeSI. NeSI's privatey policy vi2 2.1-9-g520a259 v2021.03 vdevelop-4-3

Gen3 Changes

- Creating and assigning (Minting) new Digital Object Identifiers for projects visible on the Discovery page
- Deployment NeSI own metadata-service to easily support biocultural (BC) and traditional knowledge (TK) labels and notices
 - BC/TK information must be dynamically retrieved per project

K8s Deployment

We started from gen3OnK8s.md deployment approach

https://github.com/uc-cdis/cloud-automation/blob/master/doc/gen3OnK8s.md

To deploy the solution on NeSi cloud:

- use Kubernetes deployment files present under cloud-automation/kube/services at master
 uc-cdis/cloud-automation
- gen3 scripts cloud-automation/gen3 at master · uc-cdis/cloud-automation,
- but excluded the scripts present under cloud-automation/tf_files at master · uc-cdis/cloud-automation .

The required Kubernetes infrastructure to deploy the gen3 solution has been created using openstack core automation or using UI.

K8s Architecture

Deployment Steps

- 1. Setup Ubuntu instance as Gen3 admin VM
- 2. Customize configurations
 - •Adjust **cloud-automation** to deploy on the OpenStack e.g decouple specific AWS configs
 - •Adjust **cloud-automation** repo the scripts to custom service, AGDR metadata-service, Images, adjust nginx rev proxy
 - •Updated fence, user.yaml, db credentials, etc in Gen3Secrets, etlMappings, manifest.json,etc in cdis-manifest, and other configs
- 3. Deploy k8s cluster on Flexi Infrastructure using on OpenStack CLI
- 4. Whitelist Kube API server access
- Configure DNSMASQ packages and kubefwd to enable access to k8s from adminVM
- 6. Deploy Postgresql Helm charts, configure fence_db, arborist_db, indexd db and metadata db database
- 7. Roll Gen3 deployment
- 8. Deploy Ambassador Edge Stack & Configure AWS route 53
- 9. Configure AWS CloudFront for internal access during the maintenance windows
- 10. Deploy ECK stack for logging
- 11. Deploy Velero for the k8s backup and recovery

Step3:

```
openstack coe cluster create ProdAgdrGen3 \
 --cluster-template
                      AGDR_NoFlotIp \
 --keypair xxxxxxx \
 --node-count 2 \
 --master-count 3 \
 --master-flavor m3.medium \
 --flavor m3.xlarge \
 --fixed-network xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 --labels monitoring_enabled=false \
 --labels floating_ip_enabled=false \
 --labels master_lb_enabled=true \
 --labels master_lb_floating_ip_enabled=true \
 --labels auto_healing_enabled=false \
 --labels auto_scaling_enabled=true \
 --labels min_node_count=2 \
--labels max_node_count=5 \
 --labels
admission_control_list="NodeRestriction,NamespaceLifecycle,L:
mitRanger, ServiceAccount, ResourceQuota, TaintNodesByCondition
Priority, DefaultTolerationSeconds, DefaultStorageClass, Storage
ObjectInUseProtection, PersistentVolumeClaimResize, MutatingAdministration
issionWebhook, ValidatingAdmissionWebhook, RuntimeClass"
--merge-labels
```

Monitoring System (in progress)

Documentation

- Not infrastructure independent
 - Lots of trial and error to make it work with OpenStack
- Troubleshooting to improve

Additional Resources

- Gen3 Website: https://gen3.org/
- Gen3 Helm Documentation: https://github.com/uc-cdis/gen3-helm
- Gen3 User Forum: https://forums.gen3.org/
- Gen3 on Slack: <u>https://docs.google.com/forms/d/e/1FAIpQLSczyhhOXeCK9FdVtpQpelOHYnRj1EAg1rwwnm9q6cPAe5a7ug/viewform</u>
- Email support: <u>support@datacommons.io</u>

Questions?

