
Gen3.2 - How to build a Gen3 data portal using
the new frontend framework

Gen3 Community Forum
1 May 2024

The Agenda

● Introduction
● Gen3.2 Features and Capabilities - Craig Barnes, CTDS
● Migrating from Windmill to Gen3.2 - Matthew Peterkort, Oregon Health & Science

University
● Q&A

Gen3.2 Features and Capabilities

Craig Barnes
Center for Translational Data Science

University of Chicago

Gen3 Frontend Framework: Gen3.2

The Gen3 Frontend Framework provides:

● Integrated analysis tools
● Custom content
● Per commons codebase which enables a more flexible source code management

and deployment
● Improved user, development, and administration experience
● Upgraded technology stack
● Extensibility and customization

Core Technologies

● Core:
○ React 18
○ Typescript
○ Redux-toolkit

● Application Framework: Next.js 14
● Styling: Tailwind CSS
● UI Components:

○ Mantine.dev
○ mantine react table

● Gen3 Components
● Content:

○ HTML and MDX based static pages
○ Next.js custom page

Gen3.2 Features

● Styling and theming
● Data renderer customization for tables, charts
● Global selection feature: My Data Library
● Analysis tools
● Commons specific pages
● Update designs and improved UX

Gen3.2 Applications

Existing:
● Explorer
● Discovery
● Workspaces
● Data Dictionary
● GraphQL query UI
● Profile
● Data Submission

New:
● Application Center
● My Data Library
● Administration UIs
● LLM Search
● Cohort Discovery
● 3rd party tools and applications

Styling and Theming

The portalʼs style can be
customized by setting:
● Color theme
● Fonts
● Icons

Configuration tools
Style overrides

Colors

Gen3.2ʼs Color Theme is based on USWDS theme color token: primary/secondary/accent
following the proportional 60/30/10 relationship

Navigation

Configured like data-portal
Customizable icons
3 layouts:

Classic:

Horizontal:

Navigation: Vertical

Development support

● Striving to make developing commons as simple as possible.
● Initial set of documentation:

○ https://github.com/uc-cdis/gen3-frontend-framework/tree/develop/docs

● .env files for configuration
● Fine grain connection to remote Gen3 services
● Credentials based login
● Run Gen3.2 development outside of helm charts
● Local revproxy instruction
● Supported in gen3-helm charts
● Continuously refining development support

https://github.com/uc-cdis/gen3-frontend-framework/tree/develop/docs

Environment Files

GEN3_COMMONS_NAME =gen3
NEXT_PUBLIC_GEN3_API =https://localhost:3010

NextJS supports .env files for various deployments:
● .env.development
● .env.production

You can add more:
● .env.testing
● .env.staging

Pending:
Set env variables/config in helm values.yaml

Environment Files

NEXT_PUBLIC_GEN3_FENCE_API=https://localhost:3010
NEXT_PUBLIC_GEN3_DOMAIN=https://localhost:3010
NEXT_PUBLIC_GEN3_MDS_API=https://localhost:3010/mds
NEXT_PUBLIC_GEN3_AI_SEARCH_API=https://localhost:3010/ai
NEXT_PUBLIC_GEN3_GUPPY_API=https://localhost:3010/guppy
NEXT_PUBLIC_GEN3_FENCE_API=https://localhost:3010
NEXT_PUBLIC_GEN3_AUTHZ_API=https://localhost:3010/authz
NEXT_PUBLIC_GEN3_WORKSPACE_STATUS_API=https://localhost:3010/lw-workspace
NEXT_PUBLIC_GEN3_SUBMISSION_API=https://localhost:3010/api/v0/submission

Override any Gen3 endpoint

https://localhost:3010/lw-workspace

Credentials based login

Mostly for development at CTDS:
Credentials based login

● Login with no fence redirect
● Connect FE to remote commons
● Only in development environment
● Scope restrictions on token

Explorer/Cohort Builder

Extensible to custom data renderer for table cells and charts
Gen3.2 implementation of Guppy UI components
Pending work:
● Elimination of filter tabs
● Support for sharing selection with the same facet on other indexes
● Subtable in main table.
● Row details
● Authz based filtering

New Explorer UI

Explorer in action: imaging-hub

https://imaging-hub.data-commons.org/

Discovery

Discovery Page for metadata browsing and searching
Support for custom renderers for table cells and rows
Once registered the cell renders can be added to the configuration
Define a data hook for retrieving and processing metadata from the Gen3 MDS
Basic functionality is working for all components
Todo:

● Advanced search
● Details page
● Selection
● Actions: export to workspace

Data Renderers

Gen3.2 support extensibility using data renderers
Enables data to have visual representation in Tables and Charts
Overview of the process:

1. Write a function that takes a value and returns a ReactElement
2. Register function:

DiscoveryCellRendererFactory.registerCellRendererCatalog({...});

3. Add the function to the configuration:
"field": "__manifest",
"contentType": "manifest",
"cellRenderFunction": "inline",

Data Renderer Example

Inline chart renderer __manifest
field Discovery Table

Data Renderer Example

Popup chart renderer
__manifest field Discovery Table

Custom Pages

The application framework of Gen3.2 is NextJS (vers 14.1)
Adding new pages is a matter of adding a tsk file to src/pages:
There is a template in pages/SamplePage.tsx

const SamplePage = ({ headerProps, footerProps }: NavPageLayoutProps) => {
 return (
 <NavPageLayout {...{ headerProps, footerProps }}>
 <div className="w-full m-10" >
 <Center>
 <Paper shadow="md" p="xl" withBorder>
 <Text>This is a example custom page in Gen3</ Text>
 <Text>
 You can add your own content here, and add a link to this page in
 the navigation bar by editing the config file in
 navigation.json
 </Text>
 </Paper>
 </Center>
 </div>
 </NavPageLayout >
);
};

Analysis Tool Center

Running with data-portal

Possible to run data-portal simultaneously with Gen3.2

In helm charts (currently on a gen3-helm branch)

● Add configuration for frontend-framework and data-portal in value.yaml
● Add frontendRoot: gen3ff

Gen3.2 will be on / and data-portal will be on /portal

frontendRoot: portal

data-portal will be on / Gen3.2 will be on /ff

Roadmap

Remaining:
● Eliminate issues and flaws
● Testing framework
● Accessibility compliance
● Documentation
● Improved deployment

configuration
● Modals
● Nextjs app router
● SSR components
● Simplify configuration:

○ admin UI
○ config validation

● …

May 2024

● Workspaces
● Update explorer UI
● Discovery page improvements

June 2024:

● Analysis Center
● My Data Library
● Data Dictionary

July 2024:

● New application
● Homepage layouts
● Data Submission

Migrating from Windmill to Gen3.2

Matthew Peterkort
Oregon Health & Science University

Local Development

https://github.com/uc-cdis/gen3-frontend-framework/blob/develop/docs/Local%20Development/QuickStart.md

https://github.com/uc-cdis/gen3-frontend-framework/blob/develop/docs/Local%20Development/QuickStart.md

Local Development Setup

● NVM is a painless way of managing Node versions
● Gen3 helm kubernetes instance required
● It is important to understand that the local development setup passes portal

requests to your local helm nginx setup
● If strictly following the docs using example revproxy config make sure you change

your values.yaml hostname to be localhost
● If you wish to customize and add to gen3-frontend-framework fork from:

https://github.com/uc-cdis/commons-frontend-app
● If you wish to develop and make contributions to frontend framework fork from:

https://github.com/uc-cdis/gen3-frontend-framework/tree/develop
● See gen3-frontend/framework/docs/Local Development/Using Helm Charts/ Local

Development with Helm Charts on the develop branch for setup docs.

https://github.com/nvm-sh/nvm?tab=readme-ov-file#installing-and-updating
https://github.com/uc-cdis/commons-frontend-app
https://github.com/uc-cdis/gen3-frontend-framework/tree/develop
https://github.com/uc-cdis/gen3-frontend-framework/blob/develop/docs/Local%20Development/Using%20Helm%20Charts/Local%20Development%20with%20Helm%20Charts.md
https://github.com/uc-cdis/gen3-frontend-framework/blob/develop/docs/Local%20Development/Using%20Helm%20Charts/Local%20Development%20with%20Helm%20Charts.md

Deployment Setup

● Gen3 Helm supports frontend framework
deployments with minimal changes to
existing helm gen3 deployments:
https://github.com/uc-cdis/gen3-helm/pull/1
60

● Make sure that “npm run build” and “npm run
start” work as expected before building a
custom image.

● Separate production and development
environment variables are defined in the
sample Commons. Make sure that the
production hostname matches environment
defined in helm and in the
frontend-framework.

https://github.com/uc-cdis/gen3-helm/pull/160
https://github.com/uc-cdis/gen3-helm/pull/160

Sample Commons Directory Layout

● src - Top level source
code pages imported
from
@gen3/frontend

● public - The actual
custom content files

● Config - Highly
customizable settings
files that control the
look and feel of the
website

Config Directory – Global Configurations

Page Level Configurations

Page Level Configurations

Gitops Migration

● Backwards compatible config files
● Migration from gitops to FF is as

simple as a couple of copy and
pastes

● Expanded configurations for
landing page, colors, profile and
others.

● Many configs map straight across
to to the expected json file in
sampleCommons/config/gen3

Adding a New Font

● Add font file to
public/fonts

● Add path to font file
to globals.css

● Add font name to
config/themeFonts.
json for
corresponding text
types

Before / After

Adding a New Page

● Add a new .tsx file to
gen3-frontend-framework/packag
es/sampleCommons/src/pages.

● SamplePage.tsx is given as a
template for adding new pages

● <NavPageLayout> component and
props serve as boilerplate, ex:

Linking to Navigation Bar

● Add a link to SamplePage.tsx to
sampleCommons/config/gen3/navig
ation.json, or anywhere else that
allows linking pages

● To do this add a dict entry to “items”
list as shown in right-hand image

● Supports full customization of icon,
Name, and tooltip

● SamplePage is attached to the
“DEMO” button in right-hand
example

Guppy Api Fetch

● Guppy API fetching function
part of the @gen3/core library

● More advanced fetching
techniques are used in the
cohort builder.

● Api endpoints fetching
techniques are also supported
in the core library

Fetching Data from Guppy with FF

● Uses a basic useEffect hook to fetch
data and use data in visualization

● Guppy expects query format

Guppy Output Processing

● Data Component used for
processing and mapping data
into a grid of “reference” entries.

● Essentially a grid of guppy
results where each result is a
“reference” to a patient

Putting it all together

● Code demonstrates using basic JS
hooks, fetching functions, and
Mantine components to fetch data
from Guppy

● Guppy data is displayed as a grid of
entries

● Header and footer props are
maintained to keep look and feel
consistent with the rest of the site

Putting it all together

Acknowledgements

● Speakers
○ Craig Barnes - Center for Translational Data Science, University of Chicago
○ Matthew Peterkort - Oregon Health & Science University

● Gen3 Forum Steering Committee
○ Robert Grossman - Center for Translational Data Science, University of Chicago
○ Steven Manos - Australian BioCommons
○ Claire Rye - New Zealand eScience Infrastructure
○ Plamen Martinov - Open Commons Consortium
○ Michael Fitzsimons - Center for Translational Data Science, University of Chicago

