


Gen3 Data Modeling
Herding Data Submissions & Hunting Down Data

Chris Meyer, Ph.D.

Center for Translational Data Science,
University of Chicago

May 9, 2019



Outline

1. What is a Data Model?

1. Structure of a Gen3 Data Model

1. Herding Data Submissions: Data Import and Export

2. Hunting Down Data: Querying and Filtering Data

1. Demonstration of Query, Export, and Import in Workspace



What is a Data Model?



What is a Data Model?

● A data model organizes terms in a data dictionary and defines how they relate to 
one another. It is the implementation of a data dictionary and enables Gen3 
services to submit and query data.

Data Dictionary Data Model Gen3 Services



What is the Data Dictionary?

● The data dictionary defines and describes how research datasets are represented 
in the database and harmonizes term definitions from different data sources

● Data harmonization is foundational to the data commons concept of sharing data 
for cross-project analyses.



What is the Data Dictionary?

● Dictionaries get everyone on the 
same page:

○ Define nodes and properties used across 
different but similar projects in a process 
called data harmonization.

○ Help avoid inconsistencies in data 
reporting and use across projects.

○ Make data easier to find, subset and 
analyze by enforcing Data Standards.

○ Support mapping terms to external 
controlled vocabularies like the NCIt, the 
National Cancer Institute’s Thesaurus.

Example: Different studies have their own 
unique term for “the date a participant 
enrolled in a clinical trial”. Those terms are 
harmonized, or mapped a single term, in the 
data dictionary.



● The data model enables Gen3 services to import, export, and query data.

What is the Data Model?

○ Data import and export is 
accomplished by the Sheepdog
service, which checks submissions 
against the data model to ensure all 
required fields are present and have 
appropriate values.

○ Database queries are facilitated by 
the Peregrine, Arranger, and Guppy 
services. Queries must conform to the 
data model for successful data 
retrieval.



Structure of a Gen3 Data Model



Structure of the Gen3 Data Model

● The Gen3 Data Model is a graph-like relational model consisting of interrelated 
nodes that store certain related properties.



Structure of the Gen3 Data Model

● Structured Data are imported and exported as key-value pairs by Sheepdog.
● The data element keys are termed properties in Gen3. 
● Property values can be queried using GraphQL, which is accomplished via the Peregrine, Arranger, or 

Guppy services.
● Sets of values in a node are called records or entities, which are assigned unique IDs (UUIDs).



Structure of the Gen3 Data Model

● Properties are organized into nodes, which are categories of structured data.
● Each node must have a relationship to at least one other node.
● The root node is program and must have the project node as its child.



Structure of the Gen3 Data Model

● The data model is a JSON created from 
node schemas in the YAML format.

● Each node is defined in a single schema.

● The schema contains the following:

○ A node id used for data query/submission.

○ A category used to group nodes conceptually.

○ A description which describes the node’s 
contents

○ List of links defining relationship to other nodes.

○ List of required properties.

○ List of properties.



Structure of the Gen3 Data Model

● Property definitions include:

○ property name (e.g., “blood_tube_type:”)

○ description

○ type

■ string

■ enum (enumerated values)

■ integer (whole numbers) 

■ number (floats / numbers w decimel)

■ boolean (True/False)

■ array (a list of strings)



Structure of the Gen3 Data Model

● Limitations can be put on acceptable 
property values:

○ Minimum/maximum for integers/numbers.

○ Enumerations are limited strings.

○ Strings can be required to match patterns.
● Submitted records that do not conform 

fail.



Herding Data Submissions
The Submission Service



Herding Data Submissions

● The Sheepdog service shepherds 
submissions of structured data 
into the graph database. 

● Sheepdog checks validity of each 
record in a data upload against 
the data dictionary to ensure all 
required fields are present and 
have appropriate data values. 

● Sheepdog also supports export of 
structured data records in TSV or 
JSON formats.



Herding Data Submissions: Types of Data

● Data files must be downloaded to 
view its content, which is not 
accessible via API queries. Examples 
are images, tabulated data 
spreadsheets, or DNA sequencing 
reads. 

● Structured data (AKA metadata) 
consists of records containing 
variable key-value pairs, which can be 
queried and modified via the API or 
viewed in Gen3 data exploration 
tools. 



Herding Data Submissions: Steps for Data Import

1. User Authorization

1. Data File Upload:

a. Prepare Project in Submission Portal

b. Upload Data Files to Object Storage

c. Map Uploaded Files to a Data File Node

1. Structured Data Submission:

a. Submit Structured Data

b. Link Data File Records to their structured data



File Upload: the Data Lake

● The Linked Data Lake paradigm:

○ Data files are uploaded to object storage (AWS s3 bucket). Users don’t see bucket contents.

○ Indexd assigns a unique identifier called GUID to each file. Users access files via GUIDs.

○ Files in the data lake are linked to structured data using GUIDs



File Upload: Use the ‘gen3-client’ to Upload Files

● The gen3-client is a command-line 
tool for uploading and downloading 
data files

○ The client is configured with your 
credentials and sends files to an s3 
bucket

○ A unique GUID is minted for each file

○ Indexd creates records linking the s3 
locations of files with data_file records 
in the data model



File Upload: Steps to Upload Files

1. Configure the gen3-client with Credentials Downloaded from Windmill

○ `gen3-client configure --profile=profile_name --apiendpoint=https://nci-crdc-
demo.datacommons.io/ --cred=~/Downloads/credentials.json`

2. Upload files using the profile by passing the client a file location / RegEx 

○ `gen3-client upload --profile=profile_name --upload-path=path/to/file.txt`



File Upload: Map the Files to the Data Model

3. The final step in File Upload is mapping the files to a node in the model

1. Click “Map my Files” in Windmill.

2. Choose files via checkbox to map to a particular node.

3. Assign values to required properties for the files.

4. Sheepdog creates the structured data records.

1

2

3 4



Structured Data Upload: Overview

● Now that files are uploaded and mapped to the data model, the rest of the 
project’s structured data must be submitted and linked to the data file records.

○ Sheepdog ensures structured data conform to the data model, and values can be queried via 
Peregrine

○ Data files on the other hand must be downloaded from object storage to view contents/values.

● Structured Data is submitted node-by-node.
● Typically data is submitted in TSV files (also accept JSON format).
● Sheepdog services checks submissions against the data model and creates one 

record for each row in a TSV (or entity in a JSON).
● Records are updated if a row has a previously created submitter_id or UUID



Structured Data Upload: TSV Submission Process

● TSV Submission Process

1. Download a template TSV for 
each desired node in your 
project.

2. Populate template TSVs with 
structured data.

3. Submit TSVs in the proper 
order (top-down, starting with 
the root node and moving 
towards “leaf” nodes).

4. Update links in data file TSV to 
link files to their corresponding, 
upstream structured data.

5. Sheepdog updates the records.

1

2

3

4

5



Structured Data: TSV Submission Troubleshooting

● During TSV submission, Sheepdog 
checks each entity (row in TSV) 
against the data dictionary.

○ TSVs are submitted in “chunks” of 30 
records / rows

○ If any entity / row in the TSV is invalid with 
respect to the data model, the chunk will 
fail



Structured Data: TSV Submission Troubleshooting

● After fixing the errors, the submission 
is successful and records are created 
or updated by Sheepdog.

○ If an existing submitter_id or id is 
submitted, the record is updated instead of 
created.

○ If data changes, the values are overwritten.



Hunting Down Data
Querying and Filtering Data



Windmill’s Exploration Page
a graphical user interface for cohort selection



Windmill’s Exploration Page

● Cohorts can be selected 
via a graphical user 
interface using data 
facets.

● Once a cohort is selected, 
a file download manifest 
can be sent to your 
Workspace / JupyterHub 
for easy data file access 
and analysis 



API Queries for Cohort Building 
Peregrine, Arranger, and Guppy



GraphiQL Query Building in Windmill

● The GraphiQL interactive query building 
interface makes queries more intuitive for 
both Flat and Graph models

○ Built-in documentation

○ Autocomplete for objects, fields, arguments

○ Ability to pass variables



Windmill’s Query Page

● Switch between the Flat and Graph models on 
Windmill’s “Query” Page.

● These use different endpoints that query 
different databases:
○ Graph Model hits the PostgreSQL DB

vpodc.org/api/v0/submission/graphql/

○ Flat Model hits the ElasticSearch DB

vpodc.org/api/v0/flat-search/search/graphql



Gen3 Query Overview

● Graph Model
○ Peregrine searches the PostgreSQL (graph 

database).
○ Peregrine translates GraphQL query to SQL.

● Flat Model
○ Arranger/Guppy searches the ElasticSearch DB.
○ Arranger translates GraphQL to ElasticSearch query.
○ ES queries support Aggregations.
○ Guppy facilitates easier GraphQL-like queries of 

ElasticSearch DB.



Flat Model: Aggregation Query

Flat Model queries support 
Aggregations for string and 
numeric fields:

● For strings: 
○ bin counts - the number 

of records that have each 
key.

● For numeric fields: 
○ summary statistics -

minimum, maximum, 
average, count and sum.



The GraphQL Endpoints

● Queries can be sent to both flat and graph API endpoints programmatically.



Data Import and Access in the Gen3 
Workspace

Import, Export and Query in the Gen3 Workspace JupyterHub 



Data Import and Access in JupyterHub

● Data can be exported programmatically in, for example, a Python notebook 
using the gen3-sdk, which is an open-source suite of functions for 
interacting with Gen3 APIs.

● Import the gen3sdk in Python using “import gen3”
● The gen3sdk code lives on GitHub: https://github.com/uc-cdis/gen3sdk-python

https://github.com/uc-cdis/gen3sdk-python


Workspace JupyterHub Demonstration

● Now, we will take a look at the Gen3 Workspace, featuring data query, 
export, and import in JupyterHub



Future of Services



This:
{
subject {
race

}
}

Guppy GraphQL: introduction

● Simple GraphQL schema to explore Flat model.
● But powerful, support everything Arranger does and more:

○ Histogram with bin aggregation for numbers;
○ No 10000 results limit;
○ JSON-based filters.

Not this:
{
subject {
hits {
total
edges {
node {
id
race

}
}

}
}

}

Future plans:
● Tiered access;
● Support searching by ontology values and it’s 

synonyms;
● SQL syntax for filters;
● Full-text search.



Export clinical data to PFB

Wait on Export to finish, it will export all filtered and available clinical data

After some time it will provide a copyable 
URL to PFB export of the clinical data

Portable Format 
for 

Biomedical Data



● github.com/uc-cdis

● gen3.org

● Gen3 Community on Slack

● support@datacommons.io

● ctds.uchicago.edu

Learn More

https://github.com/uc-cdis
https://gen3.org/
mailto:dcf-support@datacommons.io
https://ctds.uchicago.edu/


Selected Data Commons Using Gen3

PILOT

AnVIL



Next Webinar



Questions?


