

Data Science with Gen3

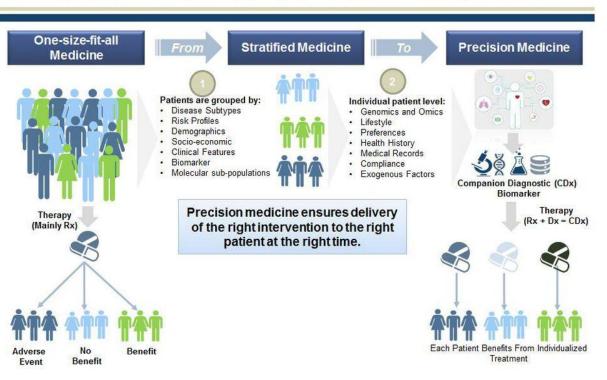
Using Jupyter Notebooks

Yilin Xu, Ph.D.

Center for Translational Data Science, University of Chicago

June 13, 2019

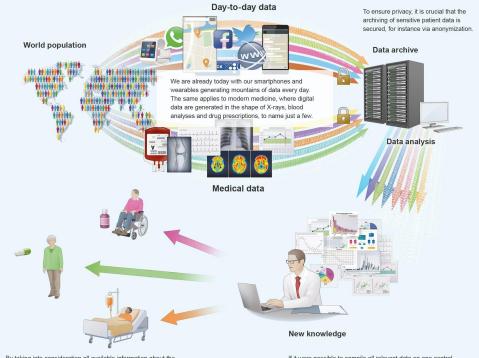
The Gen3 data model is flexible and able to host data to be analyzed in different scientific fields.


In this webinar, we will speak about using Gen3 for data analysis in general and show an example of Gen3 used for precision medicine.

Precision Medicine and Data Science

New Paradigm Shift in Treatment

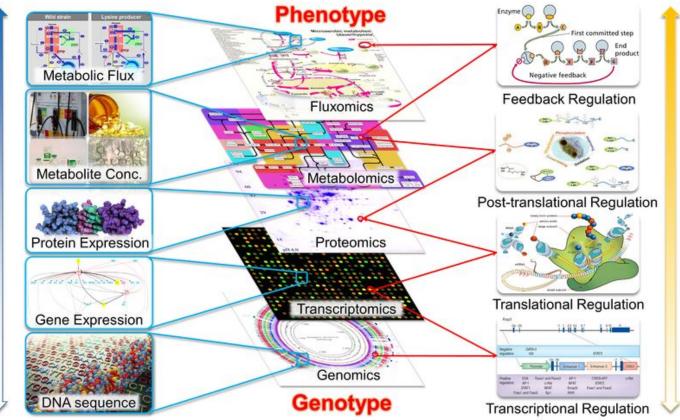
Transitioning From the 'one-size-fits-all' to 'precision medicine' model with multi-level patient stratification.



Source: Frost & Sullivan -Figure 1: New Paradigm Shift in Treatment, as referenced in this <u>forbes article</u>

Big Data in Medicine

Big data in medicine


By taking into consideration all available information about the effects of the different drug products in real-life conditions (Real Life Evidence), the doctor can selectively prescribe the ideal treatment for each individual patient. If it were possible to compile all relevant data on one central database, scientists would be able to leverage the full potential of these state-of-the-art technologies. The medical world could derive a lot of new knowledge. These data could likewise be used to optimize conventional clinical studies right from the beginning.

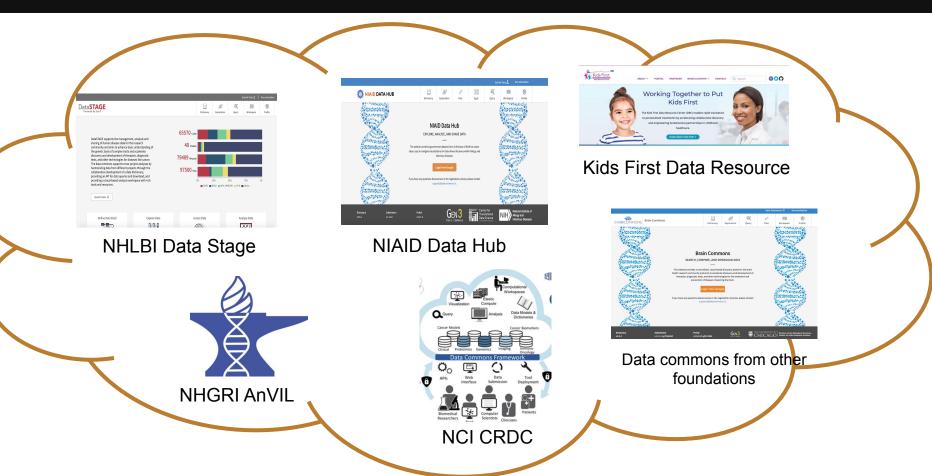
Source: Bayer Research, 30 November 2016 Big data in medicine

Big Data in Medicine

Omics Layers

Regulatory Network

Source: Guo W, Feng X (2016) OM-FBA: Integrate Transcriptomics Data with Flux Balance Analysis to Decipher the Cell Metabolism.



Data commons co-locate data, storage and computing infrastructure with commonly used software services, **tools & apps** for analyzing and sharing data to create a resource for the research community.

Robert L. Grossman, Allison Heath, Mark Murphy, Maria Patterson and Walt Wells, A Case for Data Commons Towards Data Science as a Service, IEEE Computing in Science and Engineer, 2016. Source of image: The CDIS, GDC, & OCC data commons infrastructure at the University of Chicago Kenwood Data Center.

The Gen3 Ecosystem

Narrow Middle Architecture for Data Ecosystem

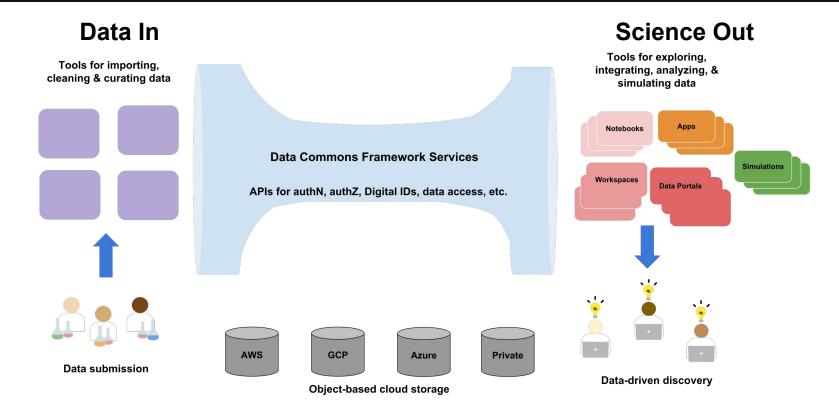
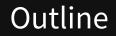



Diagram: Robert L. Grossman, Progress Towards Cancer Data Ecosystems, The Cancer Journal: The Journal of Principles & Practice of Oncology, 2018, Volume 24, Number 3, May/June 2018.

- Build Notebook in Gen3
- Select virtual cohort in data portal
- Notebook example
- Coming feature for analysis

Notebooks in the Workspace

• Notebooks combine annotation, code, and output visualization

• Gen3 currently supports Jupyter notebooks for a "lightweight workspace"

- An authorized user's workspace in a given commons includes a persistent drive in which analysis notebooks, scripts, data files, etc., are saved and persist even after logout
- Gen3 Jupyter notebooks support both R and Python language
- User Documentation available at <u>https://gen3.org/resources/user/analyze-data/</u>

Gen3 Python SDK

- The Gen3 SDK facilitates data analysis in notebooks by providing a Python library that makes calls to Gen3 APIs easier.
- Gen3 Python SDK has three classes:
 - Gen3 Auth Helper: Support json web token authentication
 - Gen3 Submission: Submit/Export/Query data from Gen3 submission system
 - Gen3 File Class: Interact with Gen3 file management features
- The Gen3 SDK is available on the python package index (PyPI) at <u>https://pypi.org/project/gen3</u>
- For detailed information on how to use the Gen3 SDK, see the Gen3 SDK documentation at http://gen3sdk-python.rtfd.io.

Access workspace

• Log into commons, select "Workspace"

				Sub	mit Data 🔟 Do	cumentation
GEN3 Data Commons DCF Sandbox	Dictionary	Exploration	Files	Q. query) Workspace	(Profile
			1			

• Click "Start My Server" to start the Jupyter server in your Workspace

Set up workspace

- Choose a virtual machine flavor with the appropriate memory and compute space required for your analysis
- As a Gen3 Data Commons operator, you can configure the different flavors based on the resources available to you, your user community's needs, and what prices you're willing to pay
- The notebook runs a container image that is deployed by kubernetes. The tools and packages in the container are available to anyone selecting the flavor.

Spawner Options

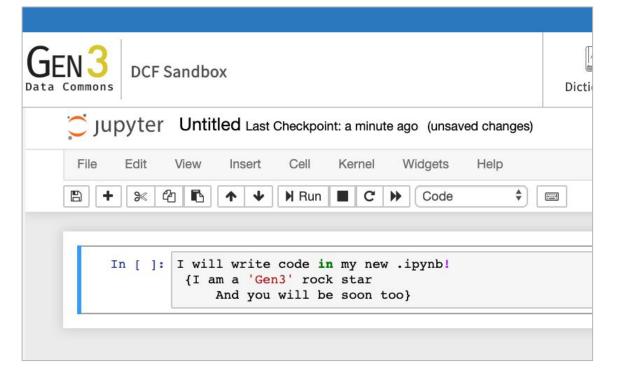
\bigcirc	Bioinfo - Python/R 0.5 CPU 256M Mem	
0	Bioinfo - Python/R 1.0 CPU 1024M Mem	
0	Bioinfo - Ariba and Mykrobe 4.0 CPU 15512M Mem	

Spawn

Docker for notebook

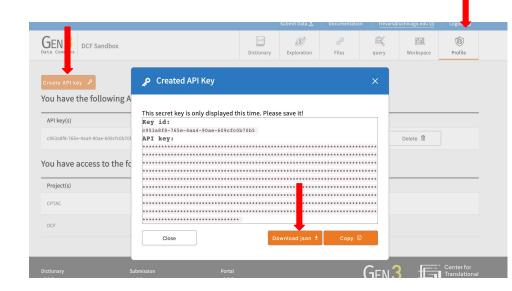
anch: master containers / jupyter / Dockerfile	Find file Copy path
philloooo chore(lumpy): add lumpy	0039fbd 26 days ago
contributors 🕘 🚟 🕄 🐝	"jupyterhub": {
	"enabled": "yes",
	"sidecar": "quay.io/cdis/gen3fuse-sidecar:0.1.2",
0 lines (60 sloc) 2.23 KB	Raw Blame "containers": [
	{
1 # Copyright (c) Jupyter Development Team.	"name": "Bioinfo - Python/R",
2 # Distributed under the terms of the Modified BSD License.	"cpu": 0.5,
3 FROM jupyter/scipy-notebook:9e8682c9ea54	"memory": "256M",
4	<pre>"image": "quay.io/occ_data/jupyternotebook:1.7."</pre>
5 USER root	},
6	{
7 RUN pip installupgrade nbconvert==5.4.1	"name": "Bioinfo - Python/R",
<pre>9 # R pre-requisites</pre>	"cpu": 1.0,
10 RUN apt-get update && \	"memory": "1024M",
11 apt-get install -y -no-install-recommends \	<pre>"image": "quay.io/occ_data/jupyternotebook:1.7."</pre>
12 fonts-dejavu \	},
13 tzdata \	{
14 gfortran \	"name": "Bioinfo - Ariba and Mykrobe",
15 gcc \	"cpu": 4,
16 libssl1.0.0 \	"memory": "15512M",
17 libcurl4-openssl-dev \	"image": "quay.io/cdis/niaid-jupyterhub:0.1.1"
18 libssl-dev \	}

Run notebook in Gen3 Workspace


- If using an existing notebook and library:
 - Upload any necessary reference files needed for the analysis to your workspace
 - Upload existing Python or R libraries to your workspace
 - You will access clinical data and object files from the data commons within the notebook

GEN3 DCF Sandbox	A-Z Dictionary	Exploration	ි Files	Q	<u>টিল্লী</u> Workspace	Profile
📁 Jupyter				I		
Files Running Clusters Select items to perform actions on them.					Upload	New -
				Name 🕹	ast Modified	File size
microbiome.R					Upload	Cancel
DAIT_lipids_demo.ipynb					Upload	Cancel
Credentials.json					Upload	Cancel
Image: Microbiome.ipynb					in a few seconds	770 kB
□ □ ndh_analysis_functions.py					seconds ago	32.6 kB

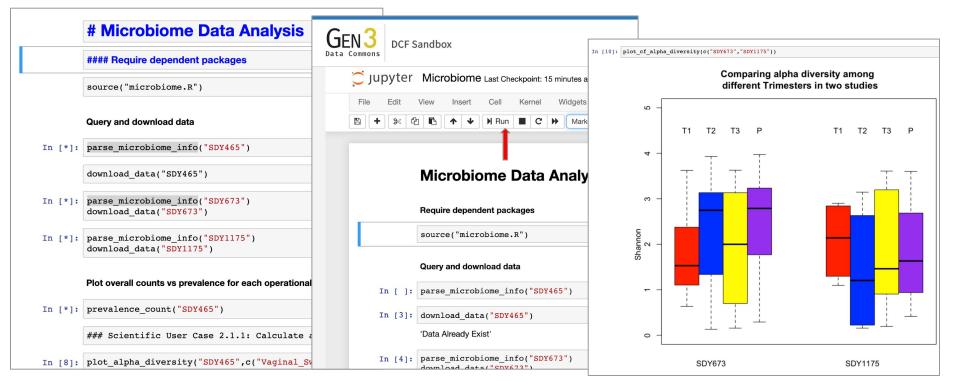
Creating notebook and libraries from scratch in the Workspace


	Upload	New -	C
Notebo	ok:		
Pytho	n 3		e
R			
Other:			
Text F	ile		
Folde	r		
Termir	nal		kВ
2 min	utes ago	32.6	kВ

Prepare your API key for data accessing

• Create or manage your API keys

- API keys are valid for a month
- Used to receive temporary access token that is valid for only 30 minutes
- Access token must be sent to Gen3 API to access data in the commons
- Upload credentials.json to the workspace to allow you to access data within your commons
 - Be sure your API credentials JSON matches the name of the JSON as you call it in your notebook


Data

Writing and running Jupyter notebook

Start Writing!

Start Analyzing!

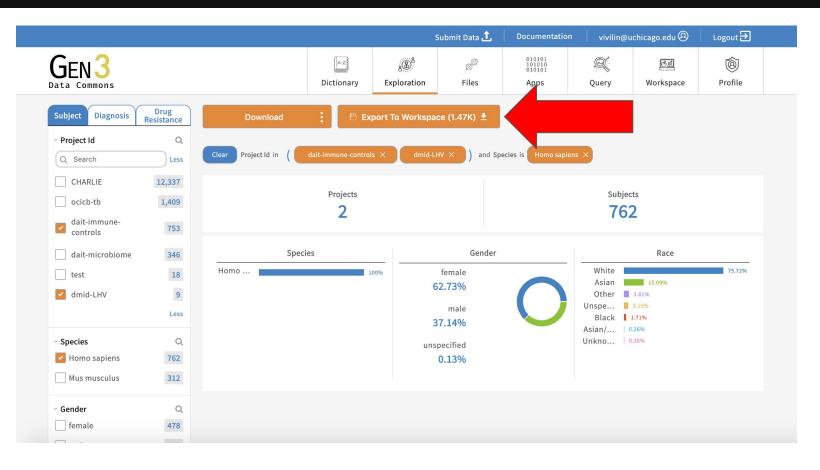
Data Commons

Tune your source code

- You can stop your notebook to manage your resources responsibly
- If you update your source code or library, you can restart to use the updated code

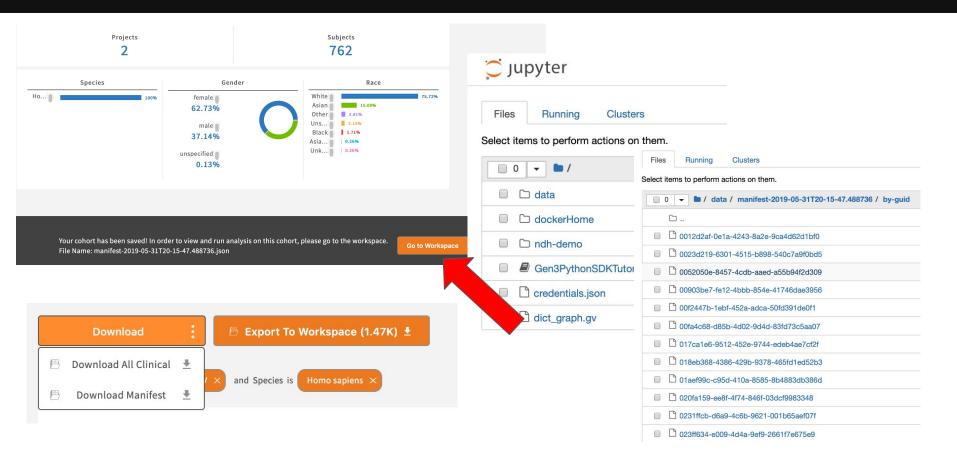
	Kernel	Widgets	Help	File Ed	lit View	Insert Cal	п			
		& Clear Output & Run All ect	me Da	Rename	ору		•	& Clear Outpu & Run All	ıt	+ me Data
k	Change	kernel	•	Revert to	Checkpoint	dependent –	Shutdo			
. F	t")		-	Print Previ Download			Change	kernel	•	
it	a			Trusted No	otebook	nicrobiom:	a			
h	o("SDY4	65")		Close and	l Halt	ad_data(" <mark>:</mark>	o("SDY4	65")		

Sharing notebooks

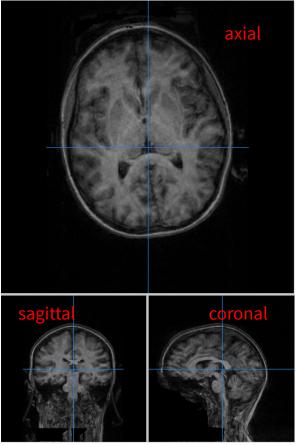


• Reasons to share a notebook:

- Review and feedback on methods
- Other scientists use your analysis on different data based on their access
- Accompany publication
- Suggestions for sharing notebooks
 - Remove results before sharing
 - Consider GitHub repositories for community accessible notebooks with associated files and libraries
- How to use a shared notebook
 - Upload all libraries and necessary files to your workspace, including notebook
 - Ensure your credentials.json is current and in your workspace


Virtual cohort selection in data portal

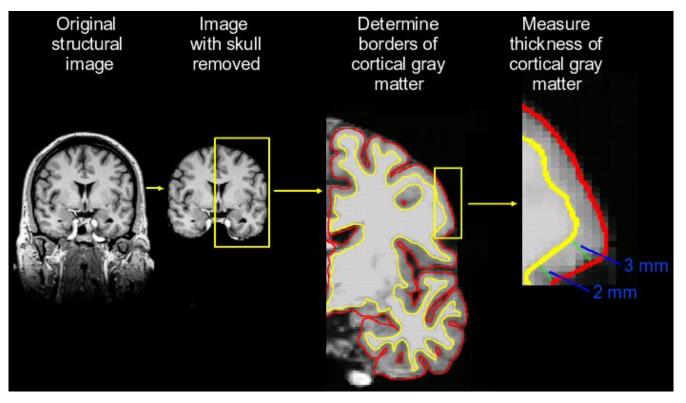
Virtual cohort selection in data portal


- Select virtual machine flavor with the appropriate memory and compute space required for your analysis
- Import API key and upload or write reference files, library and Jupyter notebook
- Select virtual cohort from data portal and import clinical and object data in virtual machine to run the notebook and tune the library
- Share notebook with community

Notebook example

Outline of the notebook:

- Analyze MRI images getting average cortical thickness measurement in different regions
- Visualize brain surface segmented into different regions
- Compare cortical thickness across groups of patients with different brain disease



Source: https://www.openfmri.org/dataset/ds000030/

Notebook example

Cortical thickness measurement

Source: http://www.martinos.org/neurorecovery/technology.htm

Freesurfer Enigma pipeline: recon-all

- Normalize brain signal intensity, skull-stripping, white matter and gray matter segmentation, and delineation of the gray-white interface
- Divide surface into separate cortical regions
- Surface area and mean cortical thickness was extracted for each of the 68 regions (34 per hemisphere)

Notebook example

USER root

COPY license /usr/local/freesurfer/license.txt

ENV FREESURFER_HOME /usr/local/freesurfer
ENV FMRI_ANALYSIS_DIR /usr/local/freesurfer/fsfast
ENV FSFAST_HOME /usr/local/freesurfer/sessions
ENV LOCAL_DIR /usr/local/freesurfer/local
ENV MINC_BIN_DIR /usr/local/freesurfer/mni/bin
ENV MINL_DATAPATH /usr/local/freesurfer/mni/data
ENV MNI_DIR /usr/local/freesurfer/mni/share/perl5
ENV PERL5LIB /usr/local/freesurfer/mni/share/perl5
ENV SUBJECTS DIR /usr/local/freesurfer/subjects

Spawner Options

0	Bioinfo - Python/R 0.5 CPU 256M Mem
	Bioinfo - Python/R 1.0 CPU 1024M Mem
	Brain - Python/R/Freesurfer 1.0 CPU 1.5G Mem
	Spawn

ENV PATH \$PATH:/usr/local/freesurfer/bin:/usr/local/freesurfer/fsfast/bin:/usr/local/freesurfer/m

ADD extract_subfields.sh /mnt/ ADD initialize_subDir.sh /mnt/ ADD extract_subcortical.sh /mnt/ ADD outlierDetection.sh /mnt/

RUN apt-get update && apt-get install -y --no-install-recommends curl tar tcsh libglu1-mesa libgomp1 libjpeg62 libxext6 libxtst && curl ftp://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/6.0.0/freesurfer-Linux-centos6_x86_64-stable-pub-v6.0.0.tar.gz | && apt-get install -y --no-install-recommends jq bc libsys-hostname-long-perl && ldconfig && mkdir -p /N/u /N/home /N/dc2 /N/ && curl "https://surfer.nmr.mgh.harvard.edu/fswiki/MatlabRuntime?action=AttachFile&do=get&target=runtime2012bLinux.tar.gz" -o && tar xf /usr/local/freesurfer/runtime2012b.tar.gz \ && apt-get remove -y curl \

a apt-get remove -y curt (

&& rm -rf /var/lib/apt/lists/*

Workspace jupyter notebook demonstration

💭 jupyter		
Files Running Clusters		
elect items to perform actions on them.	Upload	New - 2
🗆 0 🔹 🖿 / webinar-demo	Name 🕹 Last Modified	File size
۵.,	seconds ago	
freesurfer	4 months ago	
C results	4 months ago	
🗋 🗅 utils	4 months ago	
ENIGMA_cortical_thickness_demo.ipynb	Running a minute ago	804 kB
bhc_analysis_functions_update.py	5 minutes ago	48.6 kB
C Credentials.json	10 days ago	765 B
C extract_singleSubject.sh	4 months ago	5.79 kB
fsqc.sh	4 months ago	805 B
sub-10159_T1w.nii.gz	5 minutes ago	11.6 MB

GEN

Data Commons

Coming soon for analysis

 Additional tools for the workspace is in development, including R Studio notebooks, Galaxy, and more

- Clinical data export to workspace
- Gen3 workflow execution service. The Gen3 workflow execution service will use its own cwl engine, developed in-house, to execute workflows. User passes the cwl workflow ("packed") as a JSON, as well as a JSON specifying workflow inputs, to the workflow execution service API.

Learn More

• Gen3 Community on Slack

• support@datacommons.io

• <u>ctds.uchicago.edu</u>

Selected Data Commons Using Gen3

National Human Genome Research Institute

Next Webinar

Gen3 Webinar

Thursday, August 8, 2019 1:00 PM - 2:00 PM (CST)

Questions?

